Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Dexmedetomidine alleviates diabetic neuropathic pain by inhibiting microglial activation via regulation of miR-618/P2Y12 pathway

Jiannan Song1, Shan Cong1, Yan Qiao2

1Department of Anesthesiology, Chifeng Municipal Hospital; 2Department of Neurology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.

For correspondence:-  Yan Qiao   Email: qiaoyan12300@163.com   Tel:+864768365914

Accepted: 27 December 2020        Published: 31 January 2021

Citation: Song J, Cong S, Qiao Y. Dexmedetomidine alleviates diabetic neuropathic pain by inhibiting microglial activation via regulation of miR-618/P2Y12 pathway. Trop J Pharm Res 2021; 20(1):61-67 doi: 10.4314/tjpr.v20i1.10

© 2021 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the effect of dexmedetomidine on streptozotocin (STZ)-induced diabetic neuropathy pain (DNP) in rats and elucidate its mechanism of action.
Methods: The DNP rat model was established by injecting STZ (70 mg/kg) following dexmedetomidine treatment. Next BV-2 cells were stimulated using lipopolysaccharide (LPS, 200 ng/mL) and then administered 20 μM dexmedetomidine. Blood glucose levels, body weight, and paw withdrawal threshold (PWT) were measured once a week in DNP rats. Transfection was performed, and luciferase reporter assay was used to verify microRNA (miR)-337 binding to Rap1A mRNA. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the levels of miR-618 and P2Y12 while the protein levels of P2Y12 and ionized calcium-binding adaptor molecule 1 (IBA-1) were determined by western blot analysis.
Results: Dexmedetomidine treatment significantly increased PWT (p < 0.01) in DNP rats and decreased miR-618 expression (p < 0.01) but increased P2Y12 expression (p < 0.01) in the spinal cord of DNP rats. Luciferase reporter assay data showed that the presumed binding site of miR-618 is located in the 3′-untranslated regions of P2Y12. MiR-618 overexpression significantly reduced P2Y12 levels (p < 0.01). Dexmedetomidine upregulated P2Y12 expression (p < 0.01) but decreased IBA-1 expression (p < 0.01).
Conclusion: Dexmedetomidine application attenuates DNP by inhibiting microglial activation via the regulation of miR-618/P2Y12 pathway. This finding provides a potential therapeutic strategy for DNP management.

Keywords: Dexmedetomidine, Diabetic neuropathy pain, Paw withdrawal threshold, Calcium-binding adaptor molecule 1, MiR-618, P2Y12

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates